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SUMMARY. We characterize the positive solutions of the functional equation 

f(x)[l-S(x) = 
?f(x+y)dfi{y), * > O 
o 

where | s{x) | < ce~tx and ?i is a or-finite positive Borel measure on [0, oo). The solutions are applide 

to study the stability of the characterizing properties of the integrated lack of memory property, 

conditional expectation and Pareto distribution. 

1. Introduction 

Many characterization problems in statistics can be reduced to determine 

the nonnegative, locally integrable solution / of the following integrated 

Cauchy functional equation 

f(x) = ?f(x+y)d/i(y), x>0 o 
where ?i is a positive cr-finite Borel measure (see e.g., Brandhofe and Davis, 

1980; Davis, 1980; Galambos and Kotz, 1978; Lau and Rao, 1982; Rama 

chandran, 1979; Ramachandran and Rao, 1970; Shimizu, 1978). One of the 

most celebrated result of this kind is the Choquet-Deny theorem where / is 

assumed to be bounded and ?i is a probability measure : the solution is a 

periodic function with every z in the support of ?i as a period (Choquet and 

Deny, 1960). In particular if the support of ?i is not a lattice, / reduces to a 

constant. In the last decade, there are many literatures tried to remove the 

boundedness conditions on / and on ?i in the Choquet-Deny theorem 

(Brandhofe and Davis, 1980; Ramachandran, 1979; Ramachandran and Rao, 

1970; Shimizu, 1980). It is, only recently, proved by Lau and Rao (1982) 
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that such conditions are indeed redundant. The proof requires only elemen 

tary real analysis technique, and the method has been further simplified by 
Ramachandran (1982). Also about the same time, Davies (1980, 1982) 

pointed out that such a characterization has already been obtained by Deny 

(1960) in a more general setting, and has been overlooked for years. Deny's 

proof depends on the deeper Choquet theory. 

In this paper, we are interested in the integrated Cauchy functional 

equation with an error term. Such problems has been studied by Shimizu 

(1980). However, his theorem contains some restrictive hypotheses on the 

solution/ and the measure /i. We will settle this problem with some minimal 

assumptions. We call the equation 

f(x)(l-S(x)) = J f(x+y)dii(y), x>0 o 

where | S(x) \ < Oe~EX, the integrated Cauchy functional equation with an error 

term, and abbreviate by e-ICFE(fi). We prove that 

Theorem : Let ?i be a positive cr-finite Borel measure with /i(0) < 1, and 

let f be a positive locally integrable solution of the e-ICFE(/i), then 

f(x)=p(x)e**(l+K(x)), z>0 
where 

m 

(i) a is uniquely determined by | e*xd[i(x) = 1; b 

(ii) p is a periodic function with every z e supp ?i as a period, and 

(iii) K satisfies \ K(x) | < Cxe~tx for some xQ > 0, and 

Gx = 2C(l-/?(0))-1 11- J e^*d[i(x)\ . 

Shimizu (1980) has used this type of theorem to investigate the stability 
of the solutions arising from the lack of memory property and order statistics. 

We will apply the above theorem to study the lack of memory property again, 
the conditional expectation (Sahobov and Geshev, 1974), and the Pareto 

distributions. 

2 Some lemmas 

The main result of this section is Lemma 2.3. 

Lemma 2.1 : Let f > 0 be a locally integrable function on [0, oo) and let 
i 

h(x) = J f(x+y)dy. Suppose x0 > 1 and h(x0) > k > 0, then there exists an 
o 

interval I containing x0, with length | /1 > 1 and h(x) > ? k for all x e I. 
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Proof : The function h is continuous on [0, oo). Let 0 < S < 1 satisfies 

?S) 
== ? 

k, and h(x) > 
? k 

then the lemma is true). Then 

h(x0??) == ? k, and A(z) > ? k V z0?? < x < ^o (if such s does not exist> 

l-S i i 

S f(xo+y)dy = S f(xo-?+y)dy 
= 

A(*0-?) 
= 

t k 

1 
Since J* f{xo+y)dy = %o) > A> 0 

it follows that 

i i i-? 3 

? f(xo+y)dy > j f(xo+y)dy~ S ffo+yWy > x * 
l-<5 0 -? * 

Hence for #0 < # < x0-f-(l??), 

i x-*o+l i i 

*(*) = ? ?x+y)dy = ? f(xo+y)dy > J f(xo+y)dy > ? k 

The interval / = 
(x0?S, x0+l?S) satisfies the requirement. 

Lemma 2.2 : Suppose / > 0 and satisfies the e-ICFE(/?). Let 
i 

h(x) = J f(x+y)dy. Then h satisfies the e-IOFE(/?) afeo, ami ?? 0/ bounded 
0 

exponential order (i.e., there exist a e R and k 0 ?swcA that h(x) < &earr /or all 

x e [0, 00)). 

Proof: By Fubini's theorem, the e-TC'FE(/?) reduces to 

A(s)= f Hx+y)d/i(y)+ S f(x+y)S(x+y)dy. 
0 0 

Let f J f(x+y)S(x+y)dyjh(x), if %) ^ 0 

?o(*)=? L 0 if A(z) = 0. 

It is easy to show that with such definition, h and 80 satisfy 

h(x) = J h(x+y)dfi(y)+h(x)8?x), x > 0, ... (2.2) 0 

and I ?0(s) I < Ce-* } f(x+y)e-vdylh(x) 0 
< Ce~e*. 

We will prove that h is bounded exponential order by showing that 

lim (h(x))llx < 00. Suppose lim (h(x))Vx 
= 00. Let a > 0 be such that 
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?i(a, a+\) 
= b > 0; we can assume, without loss of generality, that a = 1. 

Choose k and x0 such that 

(?r?>*>^. b 

Hence h(x0) > k* 
? 

and by Lemma 2.1, we can assume that 

1 x 
h(x) > -- k ? 

Y x [xQ, x0+1]. 

Let xx 
? 

x0? 1, then by (2.2). 
3/2 

Hx^l-S^xj) > J h(x0-l+y)dfi(y). i 

It follows that 
6?> ̂  

hl(x) > 771-cTTT? > 

bk 
Let 7 = 

4(1 + 0) 
> *' then 

4(1-^^)) 
^ 

4(1+0)' 

Afo) > y?*?~ 

By applying Lemma 2.1 again, we can find an interval (x1?8l, a^+1?c^) 
such that 

1 r 1 

Hx) > -? r**? v a* e [?!?*!, xy+i?*j. 

Let #2 
= 

xL?8l?l, the same 
argument 

as above yields 

h(x2) > y^'\ 

Wt repeat this process to select the numbers. The process will terminate 

x 
at some m, such m and xm satisfy -? < m < [#0], 0 < #m < 2, and 

%m) > 7mk 
? > y 

? . 

Since y > 1 and x0 can be chosen arbitrary large, the function h is unbounded 

on [0, 2]. This contradicts the continuity of h. 

Lemma 2.3 : Let f > 0 be a solution of the ?-ICEF(/?). Then 

(i) There exists an a such that e~*xh(x) is integrable. 

(ii) // we let 

f(x) = 
J e~*yh(y)dy, d]i(y) = 

e^d^y), X 

then f(x) is continuous, decreasing and satisfies 

f(x)(l-S(x)) = 
J f(x+y)d?(y), x>0 ... (2.3) o 
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where \ S(x) | < Ce~EX, x > 0, 

(iii) Suppose fi satisfies J exydfi(y) > 1 and ?i(0) 
? 0, then there exists a 

o 
k > 0 such that 

f(x) < ?fee**. 

Proof : The existence of the a in (i) follows from Lemma 2.2. State 

ment (ii) follows from a direct application of Fubini's theorem to equation 

(2.2). 

To prove (iii), we will write /, ?i and 8 instead of/, fi and S in order to 

simplify the notations (we only need the continuity and decreasing property 

of /). By multiplying a factor of eVx to f(x), we may assume that ? < 0. 
_ 

f(x\ 
The lemma will be proved if we can show that lim ~~ = 0. 

X ?> 00 ? 

fix) 
We first show that there exists a ? < ? such that lim -^? = 0. For ' - fi?x 

X?> oo ? 

f?#) fix) 
otherwise, lim JKJ > 0 for all ? < ?, and hence lim ?' 

= oo for _ pPX 
' - ppz 

X -> oo x ?? 

all ? <X. We will choose ii, a > 0 and /? < ? so that, 

ep X ? oo 

M 

J e'vd/i(y) - & > 1. 
a 

Let #0 satisfy b/(l+Ce ?) > 1, and for each k let a^ > xQ be such that 

f(x) > fee'* Y a > xk. 

Now for # > Xk, x?a > #0, 
M M 

f(x-a)[\S(x-a)\ > J f(x-a+y)d/i(y) > te??-? J e^d^y). 
a a 

This implies that 

f(x-a) > ie**-?>6/(l+Ce-8<*-fl>) > ?e*<*-?>. 

Repeating the above argument we have, for x > % with x?na> x0, 

f(x?na) > ke^x~na). ... (2.4) 

In particular, if x?na = x' e [x0, x0+l\, then 

/(?') > fe'*'. 

Since k is arbitrary, the continuity of/ on [#0, #0+l] leads to contradiction. 

a 3-5 
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_ 
f(x) _f(x) 

To prove lim ~~ = 0, we assume that lim -?tW->0. By the previous 

paragraph, we can find a, M > 0 and ? < A such that 

lim L^f =oo, lim !^?^ =0 ... (2.5) 

M 
and J e?yd/i(y) > 1. 

Let #0 be defined the same as in last paragraph, and choose xj?, yj? so that : 

y*-i < xjc < yic, 

/(a*) = e \f(yjc)>ke 
k 

and /(a?) > e'* V *fc < s < y*. 

(The existence of xjc and y* are guaranteed by (2.5)). Since / is decreasing, 
it follows that 

k<f(yic)e <f(xk)e 
K = e K.e * = e * 

*, 

and hence yk?xjc > ?-~ > 0 

(the last inequality is a consequence of our previous assumption that ?<?<0). 
We thus obtain a sequence of interval {[a?*, yk]}kLi so ̂ at 

(a) lim (yk?xjc) 
= oo, lim s* = oo; 

k?> oo i ?> 00 

(b) f(x) > e?* V a* < * < y*. 

Let i be an integer and satisfies ?/*?x* > M, we can use the same technique 
as in obtaining (2.4) to show that 

f(x) > e?* *0 < a? < a*. 

Since xjc and yt can be chosen arbitrary large, the above conclusion contradicts 

the choice of/? that J^~ -?- =0. 

3. The main theorems 

In the following theorem, the equation is slightly different from the 

g-ICFE(/?), it partially generalizes (Shimizu, 1980, Theorem 3) by eliminating 
the redundant conditions on / and ?i. 

Theorem 3.1 : Ijet f be a nonnegative locally integrable function. Suppose 

f satisfies 

f(x) = 
]f(x+y)dp(y)+S(x), x>0 ... (3.1) o 



INTEGRATED CAUCHY FUNCTIONAL EQUATION 345 

where ?i is a probability measure on [0, oo) with /i(0) < 1, and 8(x) satisfies 

\8(x)\ <Ce-e*. 

Then f(x) =p(x)+A(x) 

where p(x) is a nonnegative periodic function with every z e supp p as a period 
and A(x) is a real function bounded by Ce~ex(l?y)-*1 with 

00 

7 
? 

J e~Bydfi(y). o 

Proof; Let /in denote the w-th convolution of p. It follows from (3.1) 

that 

m = ?f(x+y)d/4y)+m o 

= 1 (Sf(x+y+yi)dMyi)+S(x+y)\driy)+S(x) 0 \0 / 

= ?f(x+z)d/i\z)+] S(x+y)drty)+S(x) 
O o 

= J /(*+*)W)+ S1 J ?(*+2)<Mz). 
O t*=0 o 

Let A(x) = ? JS(x+z)dp?(z), 
... (3.2) 

i-0 O 

oo 

and let y = J e-*y dp(y) (< 1), then 
o 

S J ! S(?+z) WK*) < ^""Ba? S J e~z*dp\z) 
?=0 0 x=0 0 

= Ce-e* S y'* 

Ce-e* ^ 
<oo, 

i-y 

this implies A(x) is finite for each x > 0 and lim J /(#+2)d/?w(z) exists a.e. 
n?? oo O 

Define g(x) =*f(x)-?{x) 

00 
then 0(ff) = lim $ f(x+z)dpn(z) a.e., o; > 0, 

n-> ? o 
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and for almost all x > 0 

00 CO 00 

J g(x+y)d/i(y) = f f(x+y)d/i(y)-$ A{x-\-y)d?i{y) 
0 0 0 

= f(x)-S(x)~? J S(x+z)d/i^(z) 
i=0 0 

= 
/(*)-? J ,Sr(s+z)a>?(z) 

?=0 0 

= /(*)-?(x) 

It follows that g is nonnegative and 

CO 

flfa) = J g(x+y)d>My)' 0 

From Lau and Rao, 1982, Theorem 3.2, we have 

g(x) = p(a?) 

where #(#) is a nonnegative periodic function with z e supp ?i as periods. 

Therefore 

f(x)=p(x)+A(x) 

Ce~EX 
and ^t(ic) satisfies \A(X)\ < -?? 

The next theorem on the solution of the ?-ICFE(/?), where ?i is a cr-finite 

Borel measure on [0, oo), bears the same idea of proof as Theorem 3.1. How 

ever, because of the possible unboundedness of the term 

S J f(x+y)S(x+y)d^(y) 
i=0 0 

(compare (3.2) to (3.4)), we will need some elaborated proofs and the lemmas 

in the previous section. 

Theorem 3.2 : Suppose ?i is a cr-finite Bord measure on [0, oo) with 

/?(0) < 1. Suppose fis a nonnegative, locally integrable solution of the c-ICFE(/?) 

and f & 0 on any interval [a, oo), a > 0. Then there exist d0e R and xQ > 0 

stich that 

?e*?ydrty) 
= i 

0 

and for x ^ xQ, f can be represented as 

f(x)=p(x)ea?\l+K(x)), 
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where p(x) is a positive periodic function with every z e supp ft as a period and 

20 

]mi<(i^m(i-y)e^^x>XQ 

with y = 
] e{ao" 

)y 
dfi(y). o 

In particular if G satisfies C < |(1? /?(0))(1?y), then x0 can be chosen 

as zero. 

Proof : Without loss of generality, we assume that (i is nondegenerated 

at 0, and p(0) = 0. For otherwise, we let fi = (fi?/?(0))/(l?/?(0)), then 

fi(0) == 0 and the z-lCEF(fi) reduces to 

S(x) A*) 
i1-!^) 

? J/C+lf?^) 

By the assumption that / is positive and by Lemma 2.3 (iii), there exists a 

A0 such that 

Je0 dfi(y) < oo. 
o 

This yields a Ax such that 

r > 1, if A > A1? 
S e dp(y)\ 0 

L<1, ifA<Ax. 
A ?c 

By readjusting the e-ICEF(/?) with e1, we may take Ax 
= 0 and the above 

expression can be written as 

r > 1, if A > 0, 
J tPdiito) \ 

... (3.3) 
0 

I < 1, if ? < 0. 
00 

(Note that J dji(y) in this case is either 1 or oo). We obtain from the 
o 

?-lCFE(/?) and the same proof as in the last theorem that 

/(*)= lf(*+*Wn(*)+ *S J /(?+?)?(?+?)^i(?) 
0 ?-0 0 

Let -4(*)=S/ /(?-H?^?A+a;)^?;). ... (3.4) 
i=0 o 

We claim that A(x) is finite a.e. : Let / be defined as in Lemma 2.3 (ii), 

since 

1 e dfi(y)= ] eix+M d/ito). 
o o 
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We have (by (3.3)), 
f > 1, if A > -a, 

J e**dM < 
0 L < 1, if A < -a. 

If we let A = ?a+?, then Lemma 2.3 implies that there exists a k > 0 (may 

depend on c) such that 

f(x) < ke~{*-e/2)x. 
For any a; > 0, 

? J e-*27 J A(y+t)dtdy \ x 0 

< O S Je? J e?y J f(y+t)e^y^dtdy) d?i\z) 
i=?0 0 s+2 o 

<<7S F e^-(*+^/(a;+?)?M?) ... (3.5) 
i=o 6 

< Cke-{a+'l2)X ? J e-(e/2)2d/?'(z). 
?=0 o 

So, | / e-*v } A(y+t)dtdy 
? a; o 

< 
-n^- 

- <3-6) 

where yt 
= 

J e {e/md/i(y). o 

It follows that <a(#) is finite a.e. and the proof of the claim is complete. 

The function 

g(x) =f(x)-A(x) = lim J f(x+z)d^(z) (> 0) 
w? ? 0 

is hence defined almost everywhere. We will show that 

(i) gr(#) & 0 : For otherwise, f(x) = -?(a?), it follows from the definition 
of ^l(ir) and (3.6) that 

h \ ̂  Cke~i*+'MX 
?x)< t 

- (3.7) 

Also, (3.5) implies that 

f(x) < C ? J ea^?^+^)/(a;+2;)d/?%). 
?=-o o 

Substitute (3.7) into the above inequality successively, we have 

f(x)<ke-*x[-?-^\ 
. 

Choose x0 such that 

+=^<i' 
-' (8.8) 
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and let n -> oo, then f(x) 
= 0 for almost all x e [x0, oo). This implies f(x) 

= 0 

for almost all x e [x0, oo), and contradicts that /^Oon [a, oo), for any a > 0. 

OC' 

(ii) g satisfies g(x) = J g(x+y)d/i(y) : from the proof of (3.6), we know that 
o 

l'S\f(x+z)8(x+z)\dMi(z) ?=0 0 

converges absolutely. By using the same argument as the counterpart in 

Theorem 3.1, we obtain the conclusion. 

Now Theorem 3.2 in Lau and Rao (1982) implies that 

g(x) 
= 

p(x)e%*, x^x0 

where x0 satisfies (3.2), a0 is uniquely determined by 

J e*?y d/i(y) = I, o 

and p(x) is a positive periodic function with periods z e supp p. It follows 

from our assumption (3.4) on Ax 
= 0, that a0 

= 
Ax 

= 0 and p is actually a 

probability measure. Therefore 

g(x)=p(x) 

and f(x)=p(x)+A(x). ... (3.9) 

It remains to estimate the term A(x). Substituting f(x) in the definition 
of A(x) in (3.4) by the expression (3.9), we have 

A(x) 
= 

p(x)A1(x)+B1(x), x > 0, ... (3.10) 
OO 00 

where A?(x) = S J S(x+z)dfii(z), 
i=oo 

and Bt(x) 
= S J i?(a?+?)i8f(*+?)c^<(?). 

?=o o 

Since j Ax(x) | < L J | S(x+z) \ dp\z) < Cer** S J e~e* dp(z) 
?=0 0 i=0 0 

and p is a probability measure, 

\Ax(x)\ <Ce-** 2 y*' = 
^? 11 

?=o 1?y 
00 

where y 
= 

J e~e^ d/?(y). By substituting the expression of A(x) in (3.10) to 
o 

BL(x), we have 

JB^) = 
p(x)A?x)+B2(x) 
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00 00 

where A2(x) = 2 J A1(x+z)S(x+z)d/ii(z) 
i=Q 0 

and B2(x) = ? J JS1(a;+^)/S'(^+2;)^?(^). 
?=o o 

The same argument as above yields 

1^)1 
<(r=^)2 

Inductively, we have 

??(s) = p(x) ( 
S 

??(a?)) +?,(*) ... (3.11) 

and |-4?(*)| < 
(t-t )' 

Let Z(z) = 2 ??(?e). 

Then for x > a;0 (a;0 is determined in (3.8)) 

1-y \ 2C?r** 

i*i<^(,^<^ 
If we can show that lim J?n(a?) 

= 0 for x > a?0, then 
n -?? ? 

f(x) = p(x)(l+K(x)), x>x0 ... (3.12) 

and the proof of the theorem will be complete. By using the identity 

J e-*v J B^y+Wtdy =2 f?e-?} f(y+z+t)S(y+z+t)dtdyd^(z) 
X O ? = 0O?c 0 

and by applying the same proof as for (3.6) with 

14*) I 
<^> 

1 
^.7,7 . 7 __ / Cer** \2 

o 

Inductively, we have 

oo l / 
(Je-ez v2 

we have J ?r^ J \Bx(y+t)\dtdy < for** ( ?? 
J 

< oo. 

00 1 / fJp-BZ \M + 1 

J e?v J | JBn(y+i) |d% < her?* 
ly?) 

. 

Therefore lim ] e~*v f \Bn(y+t)\dtdy 
= 0, 

n ?> oo 
Xq 0 

00 

which is equivalent to {Bn} converges to 0 in measure. Since K(x) 
= 2 Ai(x) 

exists a.e., the relation (3.11) implies that 

lim Bn(x) 
= 0 a.e., x > xQ. 
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To prove the particular case in the theorem, we note that the choice of x0 
? 

m (3.8) depends only on the number A = ? 
oc+-? . Now that we already 

know the explicit form of /, we can show that 

/(*) < ke-**, x > 0 

for some k > 0. The f/2 can actually be taken as 0 and hence the x0 can be 

taken as 

Ce~ex? 

1-y 
or 

where y 
= 

J* e~exdp(x). The last statement follows immediately from this 

observation. 

Corollary 3.3 : Suppose p(0) < 1 and suppose the constant C in the error 

term, of the e-ICFE(/?) satisfies 

G'<i(i-Mo))(i-y) 
or an 

where y 
= 

f e{ot~E)xdp(y) and J e*xdp(y) 
= 1. If f is a nonnegative, locally b o 

integrable solution of the ?-ICFE(/?), then f can be represented as 

f(x) = p(x)e7X(l+K(x)) Y x > 0 

where p, and K satisfy the same conditions as in Theorem 3.2. 

CO 
If J e*xdfi(x) ^ 1 for any a e R, it can be shown that / 

= 0 a.e. 

If /? is a measure such that /?(0) > 1, then the e-ICFE(/?) can be written 
as 

/(zXl-^O)-^)) = J f(x+y)dfi(y), *>o. 
(0, oo) 

The right side is positive, and the left side is negative for large value of x. 

This implies that / 
= 0 for x ^ x0 for some x0 > 0. 

We do not have a conclusion for the case fi(Q) 
= 1. 

4. Some applications 

Throughout this section, we will consider the non-lattice random variables 

only, the lattice random variables can be handled similarly. 

A nonnegative random variable X is said to have the lack of memory 

property if 

P(X > x+y) = P(X > x)P(X >y)V-x,ye [0, oo). 
a 3-6 
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It is well known that such X follows the exponential law. Recently, there 

are two extensions of the above property (Lau and Rao, 19S2; Ramachandran, 

1979; Shimizu, 1978). Shimizu (1980, Theorem 6) has included the error 

term to one of the extensions. We will reproduce his theorem here. For 

a random variable X, we will let F denote its distribution and let G = 1? F. 

Theorem 4.1 : Let X, Y be two independent random variables with dis 

tributions Ft and F2, and F2(0+) 
= 0. Suppose X, Y satisfy 

P(X > x+y/X > Y) = P(X > x)(l-S(x)) V x > 0 ... (4.1) 

where j S(x) | <^ Ce~EX, and 

C < -- 
\l-(P(X> Y)~K J e-i*+'>vdF?y)\] o L \ o / J 

with 8 > 0 given, and P(X > Y) 
= 

J e~*vdF2(y). Then 
o 

Fx(x) - l-eax(l+Kx(x)) V x > 0 
and \Kx(x)\ < 8. 

Proof : The identify (4.1) can be reduced to 

J G1(x+y)dF\(y) 
= Gx(x)(l-S(x)), x > 0 

o 

where F\(y) 
= 

F2(y)jP(X > Y). By applying Corollary 3.3, we have 

Gx(x) 
= 

pe-aa;(l+-S:(a;)) Y ? > 0 

where j?l(#)| < ^ e~Bx. Note that j>.(1+j?l(0)) = 1 and |Ul(0)| < -, by 

expressing G? as 

G?x) = e-^il+JST^)) Y x > 0 

where #*_(#) 
= 

(p~l)+pK(x), we obtain the conclusion. 

Sahobov and Geshev (1974) established that a nonnegative random 

variable X which satisfies 

E((X-z)*?X >z)= E(X) tz^Q 

is an exponential distribution. 

Theorem 4.2 : Let X be a random variable with distribution F, and satisfies 

F(0+) = 0, 
E{{X-z)kjX > z) = E(X*)(l-S(z)) Y 2 > 0 ?. (4.2) 

where | $(z) | < Ce~Cz, and 

G < 
-| 

?1- 
^(JC*)-1. f e-<a+?>2/%*)\ 1 
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or 
with S > 0 given, and E(Xk) 

= 
J e~7yd(yk). Then 
o 

F(x) = l-e-'^l+K^x)) Yx> ? 
where \ Kx(x) | <: S. 

Proof: Equation (4.2) can be reduced to 

J G(y+z)y^dy = 
^f- G(z)(l-S(z)) Y z > 0 

and by using the same argument as above the theorem follows. 

The Pareto distribution is defined by 

r 1? akx~k, x ^ a. 

F{x)= \ 
{_ 

0 , x < a. 

It is easily seen that the transformation x = ev makes y an exponential variable. 

The Pareto law plays an important role in the study of income distribution 

(Krishnaji, 1970; Lau and Rao, 1982). 

Theorem 4.3 : Let X be a nonnegative random variable X truncated at 

a > 0, and let R be an independent random variable over the interval (0, 1). // 
the distribution of Y 

? 
XR satisfies 

P(Y >z)= P(X > x)(l-S(x)), x > 0 ... (4.3) 

where \ S(x) | < -- and C satisfies C < ? 
( 1 ? 

J" yedH(y) \ (H is the distribu 
X D \ 0 / 

tion of R). Then the distribution function F of X is of the form 

f ak 
F(x) = 

<j 1-^U+W), x>* 
i 

^ 0 x < a 

where \ Kx(x) | < 8, x > a. 

Proof : Equation (4.3) can be reduced to 

J ? 
(7) dH(r) = G(x)(l-S(x)\ V * > 0. 

o w / 

Let x = ew, r = e~^ Gx(u) 
= 

G(e"), S?(u) 
= 

S(e^) and Hx(v) 
= 

H(e~v). Then 

the above equation reduces to 

J G1(u+v)dH1(v) = G^u^l-S^u)), Y u > 0 
o 

with | S-^u) | < Ce~eu. We can apply Corollary 3.3 to obtain the conclusion. 
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